1. Money
Send to a Friend via Email
How A Photovoltic Cell Works
Return Photovoltaics

 
The "photovoltaic effect" is the basic physical process through which a PV cell converts sunlight into electricity. Sunlight is composed of photons, or particles of solar energy. These photons contain various amounts of energy corresponding to the different wavelengths of the solar spectrum. When photons strike a PV cell, they may be reflected or absorbed, or they may pass right through. Only the absorbed photons generate electricity. When this happens, the energy of the photon is transferred to an electron in an atom of the cell (which is actually a semiconductor). With its newfound energy, the electron is able to escape from its normal position associated with that atom to become part of the current in an electrical circuit. By leaving this position, the electron causes a "hole" to form. Special electrical properties of the PV cell—a built-in electric field—provide the voltage needed to drive the current through an external load (such as a light bulb).
Image of working photocell
p-Types, n-Types, and the Electric Field
 
Holes illustrationTo induce the electric field within a PV cell, two separate semiconductors are sandwiched together. The "p" and "n" types of semiconductors correspond to "positive" and "negative" because of their abundance of holes or electrons (the extra electrons make an "n" type because an electron actually has a negative charge).

Although both materials are electrically neutral, n-type silicon has excess electrons and p-type silicon has excess holes. Sandwiching these together creates a p/n junction at their interface, thereby creating an electric field.

When the p-type and n-type semiconductors are sandwiched together, the excess electrons in the n-type material flow to the p-type, and the holes thereby vacated during this process flow to the n-type. (The concept of a hole moving is somewhat like looking at a bubble in a liquid. Although it's the liquid that is actually moving, it's easier to describe the motion of the bubble as it moves in the opposite direction.) Through this electron and hole flow, the two semiconductors act as a battery, creating an electric field at the surface where they meet (known as the "junction"). It's this field that causes the electrons to jump from the semiconductor out toward the surface and make them available for the electrical circuit. At this same time, the holes move in the opposite direction, toward the positive surface, where they await incoming electrons.

Making n and p Material

The most common way of making p-type or n-type silicon material is to add an element that has an extra electron or is lacking an electron. In silicon, we use a process called "doping."

We'll use silicon as an example because crystalline silicon was the semiconductor material used in the earliest successful PV devices, it's still the most widely used PV material, and, although other PV materials and designs exploit the PV effect in slightly different ways, knowing how the effect works in crystalline silicon gives us a basic understanding of how it works in all devices.

Absorption and Conduction

In a PV cell, photons are absorbed in the p layer. It's very important to "tune" this layer to the properties of the incoming photons to absorb as many as possible and thereby free as many electrons as possible. Another challenge is to keep the electrons from meeting up with holes and "recombining" with them before they can escape the cell. To do this, we design the material so that the electrons are freed as close to the junction as possible, so that the electric field can help send them through the "conduction" layer (the n layer) and out into the electric circuit. By maximizing all these characteristics, we improve the conversion efficiency* of the PV cell.
Illustration
To make an efficient solar cell, we try to maximize absorption, minimize reflection and recombination, and thereby maximize conduction.

*The conversion efficiency of a PV cell is the proportion of sunlight energy that the cell converts to electrical energy. This is very important when discussing PV devices, because improving this efficiency is vital to making PV energy competitive with more traditional sources of energy (e.g., fossil fuels). Naturally, if one efficient solar panel can provide as much energy as two less-efficient panels, then the cost of that energy (not to mention the space required) will be reduced. For comparison, the earliest PV devices converted about 1%-2% of sunlight energy into electric energy. Today's PV devices convert 7%-17% of light energy into electric energy. Of course, the other side of the equation is the money it costs to manufacture the PV devices. This has been improved over the years as well. In fact, today's PV systems produce electricity at a fraction of the cost of early PV systems.
 

Reprinted from U.S. Department of Energy Photovoltaics Program

 
You can opt-out at any time. Please refer to our privacy policy for contact information.

©2014 About.com. All rights reserved.