The Nickel-Hydrogen battery can be considered a hybrid between the nickel-cadmium battery and the fuel cell. The cadmium electrode was replaced with a hydrogen gas electrode. This battery is visually much different from the Nickel-Cadmium battery, because the cell is a pressure vessel, which must contain over one thousand pounds per square inch (psi) of hydrogen gas. It is significantly lighter than nickel-cadmium, but is more difficult to package, much like a crate of eggs.
Nickel-hydrogen batteries are sometimes confused with Nickel-Metal Hydride batteries, the batteries commonly found in cell phones and laptops. Nickel-hydrogen, as well as nickel-cadmium batteries use the same electrolyte, a solution of potassium hydroxide, which is commonly called lye.
Incentives for developing nickel/metal hydride (Ni-MH) batteries comes from pressing health and environmental concerns to find replacements for the nickel/cadmium rechargeable batteries. Due to worker's safety requirements, processing of cadmium for batteries in the U.S. is already in the process of being phased out. Furthermore, environmental legislation for the 1990's and the 21st century will most likely make it imperative to curtail the use of cadmium in batteries for consumer use. In spite of these pressures, next to the lead-acid battery, the nickel/cadmium battery still has the largest share of the rechargeable battery market. Further incentives for researching hydrogen-based batteries comes from the general belief that hydrogen and electricity will displace and eventually replace a significant fraction of the energy-carrying contributions of fossil-fuel resources, becoming the foundation for a sustainable energy system based on renewable sources. Finally, there is considerable interest in the development of Ni-MH batteries for electric vehicles and hybrid vehicles.
The nickel/metal hydride battery operates in concentrated KOH (potassium hydroxide) electrolyte. The electrode reactions in a nickel/metal hydride battery are as follows:


