1. Money
You can opt-out at any time. Please refer to our privacy policy for contact information.

History of the Microscope

Electron Microscope

By

History of the Microscope

Electron Microscope

< Introduction: History of Early Light Microscopes

The introduction of the electron microscope in the 1930's filled the bill. Co-invented by Germans, Max Knoll and Ernst Ruska in 1931, Ernst Ruska was awarded half of the Nobel Prize for Physics in 1986 for his invention. (The other half of the Nobel Prize was divided between Heinrich Rohrer and Gerd Binnig for the STM.)

In this kind of microscope, electrons are speeded up in a vacuum until their wavelength is extremely short, only one hundred-thousandth that of white light. Beams of these fast-moving electrons are focused on a cell sample and are absorbed or scattered by the cell's parts so as to form an image on an electron-sensitive photographic plate.

Power of the Electron Microscope

If pushed to the limit, electron microscopes can make it possible to view objects as small as the diameter of an atom. Most electron microscopes used to study biological material can "see" down to about 10 angstroms--an incredible feat, for although this does not make atoms visible, it does allow researchers to distinguish individual molecules of biological importance. In effect, it can magnify objects up to 1 million times. Nevertheless, all electron microscopes suffer from a serious drawback. Since no living specimen can survive under their high vacuum, they cannot show the ever-changing movements that characterize a living cell.

Light Microscope Vs Electron Microscope

Using an instrument the size of his palm, Anton van Leeuwenhoek was able to study the movements of one-celled organisms. Modern descendants of van Leeuwenhoek's light microscope can be over 6 feet tall, but they continue to be indispensable to cell biologists because, unlike electron microscopes, light microscopes enable the user to see living cells in action. The primary challenge for light microscopists since van Leeuwenhoek's time has been to enhance the contrast between pale cells and their paler surroundings so that cell structures and movement can be seen more easily. To do this they have devised ingenious strategies involving video cameras, polarized light, digitizing computers, and other techniques that are yielding vast improvements in contrast, fueling a renaissance in light microscopy.
  1. About.com
  2. Money
  3. Inventors
  4. Famous Inventors
  5. Inventor Biography Sites
  6. Inventors A to Z Listings
  7. H Start Inventors
  8. History of the Electron Microscope

©2014 About.com. All rights reserved.